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PART I
SUMMARY OF WORK ACCOMPLISHED

1.0 Introduction

The majority of the research work accomplished under NASA
grant NsG 129-61, for the period 1 November 1963 to 30 April,
1964 was on the development of the concept of differential reflec-
tivity and in the preparation of a paper presenting the concept.

2.0 Concept of Differential Reflectivity

The concept of differential reflectivity was developed to
facilitate the description of the contributions of differential
surface elements to the total scattered field at any given obser-
vation point for an arbitrary field incident on the body. This
concept appears to have considerable utility for the solution
of many problems involving scattering from an interface separ-
nd to
the scattering of beam-limited radiation. In addition, a back-
scattered field is readily resolved into its direct and cross-
polarized components since it loses none of its vector nature in
the process of solution.

The differential reflectivity is a function of the location
and orientiation of the reflecting surface with respect to the
observation point, the properties in the incident and reflecting
media, and of the frequency of the incident radiaﬁion. Therefore,

one or more of the parameters may be varied statistically to per-

mit the evaluation of the return from a body having, say, a given



statistical distribution in surface heights above a reference
datum together with a given distribution in slopes.

The derivation of the differential reflectivity is given
in Part II section 2.0 of this report.

3.0 Application of Differential Reflectivity to a Smooth Moon

The concept of differential reflectivity was applied to
the case of back-scattered reflection from a large smooth spher-
ical body (i.e. the moon) at a large distance. The value of the
eady-state back-scattered power was obtained as a function of
the semivertex angle of an ideal conical source. Application of
these steady state results to experimental data and the assump-
tion of a pure dielectric sphere yields a minimum value for the
average dielectric constant of the moon's surface material of
1.53€¢_ . This work is presented in sections 3.0 and 4.0 of Part
II of this report.

4.0 Future Research

In the application of the concept of differential reflec-
tivity to the case of reflection from a large sphere, as presented
in Part II, certain simplifying assumptions were made. One of
these was that, for a sufficiently large body, a factor contained
in the differential reflectivity could be approximated by the
Fresnel reflection coefficients to a reasonable degree of accu-
racy. The basis for this assumption was that a differential
element of surface on a body having a large radius of curvature
could be approximated by an element of the same area but of zero

curvature.



The above approximation is no longer valid when bodies of
small radius of curvature are considered. We are presently
beginning a study to determine expressions for the differential
reflectivity for various geometric shapes which take into
account the local radius of curvature of the reflecting surface.

In Part II, the concept of differential reflectivity was
applied to the lunar surface to determine the average dielectric
constant. In this application it was necessary to treat the
experimentally obtained lunar reflection data as quasi-steady
state in order to be able to make a comparison with theoreti-
cally calculated reflected fields. This is necessary since the
transient problem. It is hoped that such a solution will explain
the characteristic shape of the lunar return power versus time
curve.

Another major area of future investigation is that on the
effects of small scale roughness, of the order of a few wave-
lengths, on the return signal from a target body. This work,
which is in its beginning stages, considers various statisti-
cal models of the reflecting surface and will utilize the concept
of differential reflectivity.

5.0 Publications

"The Concept of Differential Reflectivity as Applied to the
Reflection of Beam-Limited Radiation by a Convex Body," by A.
Erteza, J. A. Doran, and D. H. Lenhert. (Accepted for publica-
tion in "Radio Science, Journal of Research of NBC/USNC - URSI,

Section D.")



6.0 Travel
The following trip was made by research personnel for
purposes of discussion of research work, attending technical

conferences and exchanging research notes with other people

in this or allied fields:

Mr. D. H. Lenhert attended the conference on
Signal Statistics and the Fall URSI meeting

at the University of Washington in December

1963.



PART II o |
THE CONCEPT OF DIFFERENTIAL REFLECTIVITY

1. Introduction

In recent years numerous attempts have been made to obtain
information on the properties of such distant bodies as the
moon and neighboring planets [Eedhnann, 1963]. A major method
involves analyzing and interpreting the backscattered radar
return from these bodies. This backscattered radar return may
be analyzed from a number of different aspects, depending on
the nature of information sought. Through statistiéal analysis,
such information as pulse ensemble averages for discrete times
during the return as well as auto-correlations, cross-correla-
tions, and variances thereof may be found. But even for a body
as close as the moon, the information that can be obtained from
such analyses will represent gross averages over large areas of
the body.

Inférmation of particular interest is the value of each of
the electromagnetic properties, such as €, 4, and ¢, which even

in simple non-statistical problems are extremely difficult to

_separate from each other. However, this separation can be

achieved when the data is examined in the light of some simpli-~
fying theory capable of predicting the return for sharply defined
ideal condit}ons. An ana}ysis of the return data together with
the theoretical solution should then yield éverage values for

the electromagnetic quantities sought.

-5~
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.This péper presents an exact solution describing the
radar return from a simple geometric shape and an application
of this solution to the case of an idealized moon. In the
case of the moon, the idealization is necessary to de-emphasize
the contribution of factors such as roughness and lbcal varia-

tions in electromagnetic properties.




2. THEORY

2.1 The Concept of Differential Reflectivity

A concept which will prove useful in the development of
the theory outlined in this paper is that of "differential
reflectivity". This is a dyadic quantity. When this dyadic
is multiplied by a differential surface area and the vector
field incident on that area, there results an expression of
the contribution of that surface element to the scattered
field at an arbitrary observation point. The differential

reflectivity is a function of the following:

l. Location and orientation of the surface with respect
. to the observation point.
2. Properties of the two media separated by the surface.

3. Frequency of the incident radiation, w.

For the case of steady state incident radiation the reflected

Il £ield, for instance, may be described by

ﬁr(rl,w,t) =g§ 'QG(El,ro,a)) . ﬁi(ro,a),t)dso (1)
So
where ;l‘and ;o denote the coordinates of the field point’

and the surface points, respectively. ﬁi(;o,m,t) is the
incident vector field at the surface So' a(-r'l,;o,a)) is the

dyadic differential reflectivity.

-7-
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Consider now that the radiation incident on a surface is
from a pulsed, "conical" source. A "conical" source is under-
stood to be one whose radiation is limited to a cone of vertex
angle a. Within the cone the electric and magnetic fields are
uniform over any spherical surface centered on the source.
Exterior to the cone they are identically zero. .Let the source
radiate between times t=0 and t=T a sinusoidally varying carrier
wave of angular frequency w, - At some later time the outwardly
traveling wave impinges on an infinite plane surface which
separates all of space into two semi-infinite regions, each of
which is filled with a homogeneous medium. The portion of
the plane intercepted by the cone is given by S,- The intensity
of the back-scattered field at an arbitrary observation point
is desired.

If one replaces the incident wave packet with an infinite
set of steady state (conically bounded) incident waves obtained
by meansldf the Fourier transform, one may solve for the con-
tribution of a typical member of the family of steady state
waves and, finally, sum up or integrate these contributions
over the whole family to obtain the soiution to the original
problem. It may be observed that Weyl's method of expansion
into plane waves is not applicable to the beamwidth limited

case.
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Using the expression for the differential reflectivity,
the contribution to the total field at the observation point
due to a conical bounded typical member of the family of

steady state waves can be written as

Aﬂ&(rl,wb,w) =4Sg G(ry.x .m) - ﬁi(ro,wo,a))ds° (2)
S
o
where &(;l,;o,w) is the differential reflectivity and ﬁi(zo,wo.w)
is the complex phasor for the incident field due to the steady

state wave of angular frequency ®w. The time dependent total

scattered field is then

ﬁf(;l’mb’t) = %# gl:eiwt[gg’&(zl'zo'm)'ﬁi(;o’moﬂb)dso]dw (3)
S

o
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2.2 Theory of Differential Reflectivity

With attention focused on only one member of the family of
steady state waves, a derivation of the theory involving the
concept of differential reflectivity will now be shown. . Let
the Hertz vector due to the component steady state incident

wave be described by

e e—ia)t (4)

for all points r _ on the surface £ . On the remainder of the
infinite plane surface it is identically zefo. Here ;v is the
unit vector in the ﬁi direction, Co is a scalar constant relating
to the source strength, k2 = kz(w) is the propagation constaﬂt

-

v . ’ L] . = - d 3 .
in the incident medium, and Ro =r, - r. where r, is the radius

.vector from the origin to the source point.

If the origin is taken in the infinite plane surface (the
x-y plane) of which Soiis a region, and the source has the rec-

tangular coordinates (0,0,zs), so that

oz - _ 2 2 2
R, = |z, -l = J XS+ yo +Zg
there can be written
ik R'
= /2 - —iwtgge 270 V6 ')d 3y ()
Hi(ro,w,t) = a,n_Coe '——i.c‘)_—— 5(Xo - xo) (YO - Y OxXGY 5
S
o}

V= ' 2 ' 2 2
where R, = J x T+ ylT o+t 2z
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Using the Fourier integral expansion one may write

] _l7 gi eiu(xo—x(')) + iv(yo~yé)

6(xo - Xé)5(Y0 - yé) dudv (6)

so that the incident field at each point, ;o' of the surface is

given by

oiot iu(x -x')+iv(y _-y')
— [o) [o) (@] (o] ' '
ﬁi(ro,m,t) SS = S a C_e dudv]dxodyo

2

_ /.2 2
If now r = J&o-+ Yo t2g

there can be obtained by analytic continuation the expression

'ﬁi('f,w,t) = o 10 SS RY SS ?a’w_coeiWi dudv]dxédyé (8)

where W, = u(xo—xé)~+ v(yo-yé) -z Jkg - (u2-+ vz)
'The expression (8) which reduces to (7) for r = ;o is subject to
the following interpretation: it can be considered to be the
field due to an infinite collection of plane waves, symmetrically
distributed about the local normal to the incident wave front,
which combine at a point on the reflecting surface to yield

the net incident field due to the original source. The propa-
gation constant associated with each of the plane waves is soO
determined that the entire collection adds to a two-dimensional

delta function at the point in question.

(7)
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Consider now a Hertzian plane wave having a propagation

vector with components [u, v, Jk% - (u2 + VZ)W and polarization

in the direction gw to be reflected from the surface. The

reflected plane wave will be described through the use of a-

dyadic reflection coefficient V(u,v). At an observation point
Q(%D the total reflected field due to illumination of the sur-
face So by the infinite set of plane waves will be given by

s
(o]

(( U(u, v)e r dude ra C e -lth\dx'dy

-' ( 1la)‘t) é

(9)

7y,

where W_ = u(xl - xé) + v(yl -yé) + 2z, Jk% - (u2 + Vv

Comparison with (1) yields the differential reflectivity

Sl .
= (l(‘ ¥/ < .-\-lwr T 10
¢ = m JJ \Md,v /e uQayv ( )

-

2y

<
o}

The form of the components of the reflection coefficient Vv will
depend on the nature of the surface SO. If the surface is spher-
ical they may be deriﬁed from Mie's solution for a plane wave
incident on a sphere. For an infinite plane surface they

reduce to the ordinary Fresﬁel reflection coefficients.



2.3 Derivation of the Components of @
For purposes of computation it will prove useful to

evaluate the vector gquantity

;:‘. = __l.._. C% Ol >\ L = oA eiwr dudv = & a2 C (11)
R 477-2 JJ viuad,Vv) d_n_bo - oo
. -0

Referring to figure 1,let there be defined two coordinate
systems having their origins at the point P on the reflecting

surface. The Q system will be defined by the orthogonal set

e — -
of unit vectors a,, a, and a, and the K system by the ortho-
-

. - -t —
gonal set a a,, and a . Here a, is the positive unit normal

P’ °N
to the reflecting surface, gr is in the direction of the pro-

jection of Kl on the tangent plane through P, and gt = Zr x gn’

The vector gp is in the direction opposite to that of the pro-

-

jection of k2 on the tangent plane and ay = a, X ap.

These two reference systems are in addition to the primary
reference system in which, in a generalized problem, the sur-

face normal changes direction as one traverses the surface

under consideration.
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The vector (11) may be resolved as follows:

iw
—‘= r
P - 2 SS ap VPPCPe dudv

1

iw
+ 1—7 SS aNV C e T dudv (12)
T .

1

— r =—’
+ 4#2 SS anVnnCne dudv Z% + 2& + 25

where awco = aPCP + aNCN + ancn' For plane Il-waves reflecting

from an infinite plane surface it can be shown that

(—2) n? cos a - an - sin’ a
= _ Hq
VPP(a) = - Vnn(a) = 2 >
( ) n? cos a + Jn - sin” «
(13)
! 2 2
(—) cos a - Jn - sin“ «
. H2
V(&) =
NN ! , ,
(—) cos a + Jﬁ - sin® «
M2
. 1 Juz + v2
where a = angle of incidence = sin -~ ( > ), and n =
)
, Ky .
index of refraction = EE . In this case VPP and VNN are iden-

tical with the Fresnel reflection coefficients. Off-diagonal

components of ¥ are identically zero by virtue of the choice

of reference system.
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Let u = ANcos B = k2 sin o cos B
v = A sin B = k2 sin &« sin B
xl—xé = P cos 9,
- ; 14
Y175 = Py Sin 9 (14)
z, = R; cos 6l
On substitution into (12) one obtains
@ 2r . .
. L ¢ izp, cos (9,-B) + iz.k, cos «
% =a B Cv o) TC & 1 172 ag han
et 1 TrL (V) nni. .-L.\é' -
o
- ‘C = lZlk2 cos «o
I g vnn[a(%)w Jo (xp) e AdA (15)
Also one can obtain
I >
o=tk
C ~ iz.k, cos &
o 172 _
= 3, g [f (Ao + fz(x)Jz(pr] e AGA
c = iz k cos o
¥ 3 S [f (NI (he) = £,(N)T,(A0) )] e Adn - (16)
3 1 1 2 2
where

£,00) = vy [a(n) ] + vy [a(n)]
£,(0) = Vpp [aW)] - vy [a)]

c, = (3, - ale, = (3, - EP)CP + (3, - ag)cy
c, = (ar . aTr)cO = (ar . aP)cP + (ar . aN)cN
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Approximate evaluation of f% and f& as given in (15) and
(16) may be made by use of the saddle-point method EBrekhovskikh,

‘1960] which, under the assumption k,R; sin 291 > > 1, yields

ik.R
-S-’\‘ - =: k2 ,‘V’ Is \ e 2 l_ CcOS 6 c
“n “n 271 ‘pp‘\Y1/ Ry 1-"n
- - Kk e
Zp = 3 7T Vaw(0q) R °°° 61 C¢ (17)
. K, !
+ ar 771 Vep\Y1/ R, cos 6; C.

) — ~n — .
From the expression L = 0.a C  we now find

cij =0 L #3
X 1k,R,
0., = o2rV (6,) E—~— cos @
tt 2ri NN'T1 Rl 1
. k2 eik2Rl
Ocr = 771 Vpp(67) R °°° 9, (18)
X, SR
an = 7 7T Ver(f1) TR o5 8y

as the components of the differential reflectivity with respect
to the designated coordinate system.

Similar results may be obtained for surfaces.of arbitrary
curvature by use of the appropriate form of the reflection coef-
ficient. It is realized that evaluationlof the reflection coef-
ficient ¥V for a plane wave incident on an arbitrary surface may

be a problem in itself.
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3. Application to the Idealized Moon

An application of the method to the case of a large spheri-
cal objéct such as the moon can easily be made with the aid of
a few approximating assumptions. In particular, the spherical
quect will be assumed to’be‘a smooth sphere of 1arge radius,
a, and composed of a homogenous lossless substance. Geometry
pertinent to the problem is shown in figure 3. The origin of
~ the spherical coordinate system is located at the center of
the sphere with the source and the receiver being located at
r =D and § = O. Additionally, let 6§ = %,and @ = O define the
positive x-axis; and 6 = O define the positive z-axis.

Let the source be an electric dipole oriented in the
x-direction so that | .

ni =al ~—g— : _ (19)

where Ro is the distance from the source to a point on the sur-

face of the sphere. It is readily seen that

c, = - CO sin @
c_ = - Co cos @ cos 8 : (20)

c_ = Co cos @ sin #
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Realizing that the proper reflection coefficients to use
in this case would be those obtained from Mie's solution to the
problem of a plane wave inecident on a sphere, the assumption
is now made that due to the very large radius of the sphere com-
pared to the wavelength of the incident radiation, these reflec-
tion coefficients may be replaced by their limiting values as
the radius ofAthe'sphere increases without limit. These limiting
values are, ipso facto, the Fresnel reflection coefficients as
given in (13).

~From (1), (18) and (20) there is obtained

S

ik,R ik,R

- : e 20© 2

+ a_ cos ¢ sin @ v“hfe,)T — = sin 8d8de (21)
ii i 4 3 l‘.o Kl

where Rl is ds before, the distance from a point on the surface
to the observation point. If in this expression one replaces Rl
by R0 SO0 as to obtain the back-scattered field at the position
of the source one finds, on performing the integration over P,
that (21) vanishes. However, as will be shown, the E and H

fields at this point do not vanish. We will then be able to

compute the net power incident on an antenna of given effective

area.
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The elementary far field contributions to the E and H fields

at the observation point are given by

- _ 2—9 - -
BE(Rl) = - k35 ag x (aR x 8IL.)
(22)
5H(Rl) = wkzez(aR x 6Hr)
where ER = gr sin 61 +. a_ cos 91
and
- a2k2 - -
81 = -.c_ »—= cos el[at sin @ Vi (6,) + a,. cos ¢ cos 8 Vop(8;)

. elszl elszo'
+ a  cos g sin GVPP(Gl)] =

= sin 646dg. (23)
1 o)

One obtains, on making the indicated substitutions and integrating
. . haad b d
over .¢, the remaining components of E and H

. o
wazc X3 a2 eleZRO(Gl)

. oKy - ; )
Ex(Ro) = —5=7 Y. » 51n61coselLVPP(61) + VNN(el)COSZGleel
© . (24)
and '
Wazwkgézco 6a eiZkZRo(el) ' -
Hy(RO) = T ) " sxnelcose1\_‘VPP(6l)cosZGl-t-VNN(el)]del

(25)

where-'Ro ~ D an8 61 ~ 8 have been used as approximations since

D > > a.
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In order to obtain numerical results for the problem at hand,

the Fresnel reflection coefficients VPP and VNN are replaced at

" this point by the exXpressions

VﬁP = L3-cosz e + Lq cos 6 + 1
(26)
VNN = Ll cos2 6 + L2 cos O - 1
where
Ly = -0.7
L2 = p + 1.7
- P 1
Ly = 2 + & (27)
- 17
Ly = ‘LL3h +,FJ
_ l-n =
p = Vi(0) = $B  ifu; =y
and
h = cos Gb

where Gb is that angle satisfying the relation VPP(Gb) = 0. The

approximation is based on matching the curves VPP(G) versus 6

and VNN(G) versus @ at three points, namely, at 8 = 0°, 6 = 90°

and 8 = Ob. Figure 4 shows the approximate reflection coeffi-
cients Vép and VﬁN in relation to the exact coefficients for the

case:

“l = u2, cl = 02 =0 and n = 1.5
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Let now

azc X >
E = o 2 I
X D2

2 2 ' (28)
a wkz EZCO .

where
6 .
a i2k,(D-acosb.) N
I = -~ ig e 2 1 sinelcoselLVl')P(el)c,OSZGl + Vﬁm(e‘l)]dq_

On substitution of the expressions for Vﬁp and V&N there results,

after integration and dropping of terms involving powers of

1 higher than the first,
2k2a

i2kZD . 42k.a cos 0 -iZ2k.a
1=-%——|e 2

> e a £(8_) - £.e 2 ] (29)

where fo = 2p

and

4 o 3
6, + (L, - Ly + 2) cos G

' f(ea):= ?LBCOSSGa + 2L)cos 3

+ (L2 - L4) cos? 6, - 2 cos 6 (30)

From the relation

1

§=7Reli:’xﬁ'* (31)
is obtained
5~ 2_2
wek,7C “a
§=—22° __ r() (32)
32D

where F(Ga) fz(ea) + f02 - 2fof(6a) cos LZkza(l—cosea)] and
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S is the average steady étate power returned for a fixed beam-
width 292a of illumination, corresponding to an illuminated
area of the spherical surface subtended by the polar angle Oa
(measured at the origin). The angles Ga and 92a are shown

in- figure 5.

Now it is desired to evaluate Cg in terms of normal radar
quantities in order to obtain the power received Pr by the
radar. if PT is the peak power radiated by the antenna, GT is
the gain of the transmitting antenna over an isotropic antenna,
and GSD is the gain of a short dipole over an isotropic antenna
(= 3/2). then the power which must be radiated by the short
dipole (WSD) to yield the same power density in the main lobe

is given by

Wop = G = 3 . (33)

’ .M
Then LStratton, 1941J

2 Msp
Co = — (34)
o 4 2
The received power, Pr' is given by
= 2
S G, A
_ R
Pr = oy (35)

where GR is the receiving antenna gain over an isotropic
antenna and A is the wavelength at frequency w.

Using (32), (33), and (34), (35) becomes

Pp GpGq xzcnaz) F(ia) (36)

(NW)B-Du

Pr(ea
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It can be observed that the third term of F(Oa) as given in
(32) is extremely sensitive to variations of Ga. This is because
of the large value of k2a for a body of the size of the moon at
microwave frequencies. Figure 6 shows F(ea) plotted versus Ga

for three distinct situations:

| cosLZkza(l - cos Ga)] =1, 0, -1 (37)

Noting that F(ea) converges to only one value for Ga = 900,

(36) becomes
2
P, G, G, A°
p_(90°) = fuv; i (0% Ta?) (38)

The last term in (38) is just the radar scattering cross section

of a sphere, that is the power reflection coefficient, pz, times
the geometrical cross section, Waz. The first part of (38) is
just the standard two way radar range eguation LKerr, 1951].
Therefore, the results that are obtained in this paper using the
cohcept of differential reflectivity are identical with those
obtained under the same conditions using the Mie solution. How-
ever, using the method presented in this paper one can obtain the
steady state power returned for any specific antenna pattern
including.partial illumination of the moon. This cannot be

done by any other known method.
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4. An Application to Experimental Data

Since it is often possible to obtain information about the
transient solution of a problem from its steady state solution, .
an attempt is made here to predict the possible transient solu-
tion of the problem under consideration without performing the
integration indicated in (3). Letting Ga be considered as
a function of time it is seen that fo in F(Ga) is independent
of time and will be accepted by the receiver:; f(ea), is a slowly
varying function of time and would, no doubt, show up in the
receiver output. The last term, being a high frequency term
(of the order of the transmitted frequency), would not be passed
through the receiver because of iﬁs band pass characteristics.
The rise time of the first two terms, however, would be too high
for an ordinary radar receiver, and the initial portion of the
return signal would be limited by the step response of the

receiver and/or the transmitted waveform.

In addition, in the practical case of return from the moon,
roughness over the first few Fresnel zones would cause a consid-
erable modification in the received initial slope giving, possibly,
an ensemble average slope of the received pulses less than that
of the receiver step response. In any case the maximum of the
average returned power in an experiment should be indicative of
average electromagnetic properties of the moon's surface for the
assumption that the surface roughness is negligible. If the
roughness were not negligible, the maximum average value would

be less than that for the case involving no roughness. Corre-
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spondingly, the average electromagnetic properties obtained by
matching the maximum ensemble average of actual returns with
the maximum indicated by this theory (for a smoocth moon), would

yield the minimum average values for the actual moon.

The received power will now be calculated and applied to
the data obtained from a pulse radar lunar reflections experi-
ment by Mathis Ll963]. By the previous discussion only the
DC and slowly varying terms of F(ea) will be used in the compu-

tation of P_. The radar parameters of Mathis' experiment are

r
listed in tabkle 1. The maximum value of F(Ga) is
g2 + £2(6)] =807 (39)
max
Then (36) becomes
Gp Cp Pp 7‘2 2__2 ‘
P_ = 57 (2p4ra“) (40)
max (4w)” D
and on letting
P, =2 106
T = .Hh x watts
D = 2.34 x 10° miles
a = 1.08 x 10° miles
Gy = G, = 37.5db
P (&bm) = - T7:3 + 20 log,, P (41)
max '

Now using Mathis' L1963] maximum value foxr P_ of - 96.8 dbm,
: ~ “max
one obtains |p]| = 0.106 and upon letting My = Ho
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| 1+ _ _ R |
n = '1___'*'%*' = 1.24 ?-2- (42)

‘This yields a minimum average value of € for the material com-
posing the moon's surface. ‘Thus €ve = l.53€o,a value which is

consistent with those obtained by other investigators.
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5. Conclusions

This paper has presented an exact solution to beam-limited
reflections of a conically bounded spherical wave from a semi-
infinite plane through the use of the differential reflectivity.
In general, the use of differential :eflectivity provides a
method for decomposing the radiation from an arbitrary source
into an infinite set of plane waves at each point of the illu-
minated area so that, in order to determine the reflected fields,
only the reflection coefficients for a plane wave incident on
the body need be known or approximated. It has been qualitatively
shown that the approximate reflection coefficients for a convex
body with either a large radius of curvature or consisting of a
lossy medium are the Fresnel coefficients. |

The theory has been applied to the case in which a beam-
limited spherical wave is incident on a smooth sphere. The
steady state back-scattered power returned from the sphere is
obtained. The time average steady state power returned displays
very rapid fluctuations with the increase in the number of
Fresnel zones illuminated. Upon matching this expression for
average power with the appropriate experimental data as obtained
from the moon, the minimum value for the average dielectric 'con-

stant is found to be 1.53.
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This method, using the differential reflectivity,proves
to be a useful tool which can also be applied directly to the
case of acoustic scattering. With the use of high-speed digi-
tal computers, the restrictions imposed herein merely to facili-
tate computatign can be easily relaxed. The method may also
be easily modified so as to incorporate statistical variations

in any electrical or geometrical parameters.
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Table 1. Trinidad Test Site Radar Parameters
[Matnis, 1963 |

ANTENNA 84 foot Parabolic

=]
1=
n
o g
0
w
N
)
td
(2]
=
Q
£
o]
ot

37.5 db Gain
2.25°Beamwidth
Transmit one Polarization
Receive Transmitted and Orthogonal
Polarization
TRANSMITTER Continental Electronics AN/FPT - §
425.0 Mcs
2000 Microsecond Pulse
30 or 30.2 Pulses/Second
2.5 Megawatts Peak Power (Nominal)

Rectangular Pulse

RECEIVERS Noise Figure 5.5 db Maximum

Frequency Stability- 1 part in 10
in 33 milliseconds

Gain Stability- .25 db in 4 hours
Dynamic Range- 40 db (Linear)

Bandwidth 4.7 KCS
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Figure 2. Reflection from Non-Planar Surface
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Fiéure 3.

Geometry for Reflection from a Sphere
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ILLUMINATED
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Figure 5.

Beamwidth-Limited Illumination
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